کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8897990 1631054 2018 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The noncommutative Löwner theorem for matrix monotone functions over operator systems
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
The noncommutative Löwner theorem for matrix monotone functions over operator systems
چکیده انگلیسی
Given a function f:(a,b)→R, Löwner's theorem states f is monotone when extended to self-adjoint matrices via the functional calculus, if and only if f extends to a self-map of the complex upper half plane. In recent years, several generalizations of Löwner's theorem have been proven in several variables. We use the relaxed Agler, McCarthy, and Young theorem on locally matrix monotone functions in several commuting variables to generalize results in the noncommutative case. Specifically, we show that a real free function defined over an operator system must analytically continue to a noncommutative upper half plane as map into another noncommutative upper half plane.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 541, 15 March 2018, Pages 54-59
نویسندگان
,