کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8898044 | 1631056 | 2018 | 22 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Ehrhart tensor polynomials
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The notion of Ehrhart tensor polynomials, a natural generalization of the Ehrhart polynomial of a lattice polytope, was recently introduced by Ludwig and Silverstein. We initiate a study of their coefficients. In the vector and matrix cases, we give Pick-type formulas in terms of triangulations of a lattice polygon. As our main tool, we introduce hr-tensor polynomials, extending the notion of the Ehrhart hâ-polynomial, and, for matrices, investigate their coefficients for positive semidefiniteness. In contrast to the usual hâ-polynomial, the coefficients are in general not monotone with respect to inclusion. Nevertheless, we are able to prove positive semidefiniteness in dimension two. Based on computational results, we conjecture positive semidefiniteness of the coefficients in higher dimensions. Furthermore, we generalize Hibi's palindromic theorem for reflexive polytopes to hr-tensor polynomials and discuss possible future research directions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 539, 15 February 2018, Pages 72-93
Journal: Linear Algebra and its Applications - Volume 539, 15 February 2018, Pages 72-93
نویسندگان
Sören Berg, Katharina Jochemko, Laura Silverstein,