کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8898099 | 1631082 | 2017 | 42 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Canonical polyadic decomposition of third-order tensors: Relaxed uniqueness conditions and algebraic algorithm
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In the particular case R=K, the new bound above is equivalent to the bound Râ¤(Iâ1)(Jâ1) which is known to be necessary and sufficient for the generic uniqueness of the CPD. An existing algebraic algorithm (based on simultaneous diagonalization of a set of matrices) computes the CPD under the more restrictive constraint R(Râ1)â¤I(Iâ1)J(Jâ1)/2 (implying that R<(Jâ12)(Iâ12)/2+1). We give an example of a low-dimensional but high-rank CPD that cannot be found by optimization-based algorithms in a reasonable amount of time while our approach takes less than a second. We demonstrate that, at least for Râ¤24, our algorithm can recover the rank-1 tensors in the CPD up to Râ¤(Iâ1)(Jâ1).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 513, 15 January 2017, Pages 342-375
Journal: Linear Algebra and its Applications - Volume 513, 15 January 2017, Pages 342-375
نویسندگان
Ignat Domanov, Lieven De Lathauwer,