کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8898164 1631318 2017 44 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A sharp Cauchy theory for the 2D gravity-capillary waves
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
A sharp Cauchy theory for the 2D gravity-capillary waves
چکیده انگلیسی
This article is devoted to the Cauchy problem for the 2D gravity-capillary water waves in fluid domains with general bottoms. Local well-posedness for this problem with Lipschitz initial velocity was established by Alazard-Burq-Zuily [1]. We prove that the Cauchy problem in Sobolev spaces is uniquely solvable for initial data 14-derivative less regular than the aforementioned threshold, which corresponds to the gain of Hölder regularity of the semi-classical Strichartz estimate for the fully nonlinear system. In order to obtain this Cauchy theory, we establish global, quantitative results for the paracomposition theory of Alinhac [5].
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annales de l'Institut Henri Poincare (C) Non Linear Analysis - Volume 34, Issue 7, December 2017, Pages 1793-1836
نویسندگان
,