کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8898875 1631503 2018 59 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Degree counting and Shadow system for Toda system of rank two: One bubbling
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Degree counting and Shadow system for Toda system of rank two: One bubbling
چکیده انگلیسی
We initiate the program for computing the Leray-Schauder topological degree for Toda systems of rank two. This program still contains a lot of challenging problems for analysts. As the first step, we prove that if a sequence of solutions (u1k,u2k) blows up, then one of hjeujk∫Mhjeujkdvg, j=1,2 tends to a sum of Dirac measures. This is so-called the phenomena of weak concentration. Our purposes in this article are (i) to introduce the shadow system due to the bubbling phenomena when one of parameters ρi crosses 4π and ρj∉4πN where 1≤i≠j≤2; (ii) to show how to calculate the topological degree of Toda systems by computing the topological degree of the general shadow systems; (iii) to calculate the topological degree of the shadow system for one point blow up. We believe that the degree counting formula for the shadow system would be useful in other problems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 264, Issue 7, 5 April 2018, Pages 4343-4401
نویسندگان
, , , ,