کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8898908 | 1631503 | 2018 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Existence of infinitely many stationary solutions of the L2-subcritical and critical NLSE on compact metric graphs
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We investigate the existence of stationary solutions for the nonlinear Schrödinger equation on compact metric graphs. In the L2-subcritical setting, we prove the existence of an infinite number of such solutions, for every value of the mass. In the critical regime, the existence of infinitely many solutions is established if the mass is lower than a threshold value, while global minimizers of the NLS energy exist if and only if the mass is lower or equal to the threshold. Moreover, the relation between this threshold and the topology of the graph is characterized. The investigation is based on variational techniques and some new versions of Gagliardo-Nirenberg inequalities.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 264, Issue 7, 5 April 2018, Pages 4806-4821
Journal: Journal of Differential Equations - Volume 264, Issue 7, 5 April 2018, Pages 4806-4821
نویسندگان
Simone Dovetta,