کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8898909 | 1631503 | 2018 | 67 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Dispersive estimates for rational symbols and local well-posedness of the nonzero energy NV equation. II
ترجمه فارسی عنوان
برآوردهای پراکنده برای نمادهای منطقی و صحت محلی انرژی معادله انرژی غیر صفر.
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آنالیز ریاضی
چکیده انگلیسی
We continue our study on the Cauchy problem for the two-dimensional Novikov-Veselov (NV) equation, integrable via the inverse scattering transform for the two dimensional Schrödinger operator at a fixed energy parameter. This work is concerned with the more involved case of a positive energy parameter. For the solution of the linearized equation we derive smoothing and Strichartz estimates by combining new estimates for two different frequency regimes, extending our previous results for the negative energy case [18]. The low frequency regime, which our previous result was not able to treat, is studied in detail. At non-low frequencies we also derive improved smoothing estimates with gain of almost one derivative. Then we combine the linear estimates with a Fourier decomposition method and Xs,b spaces to obtain local well-posedness of NV at positive energy in Hs, s>12. Our result implies, in particular, that at least for s>12, NV does not change its behavior from semilinear to quasilinear as energy changes sign, in contrast to the closely related Kadomtsev-Petviashvili equations. As a complement to our LWP results, we also provide some new explicit solutions of NV at zero energy, generalizations of the lumps solutions, which exhibit new and nonstandard long time behavior. In particular, these solutions blow up in infinite time in L2.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 264, Issue 7, 5 April 2018, Pages 4822-4888
Journal: Journal of Differential Equations - Volume 264, Issue 7, 5 April 2018, Pages 4822-4888
نویسندگان
Anna Kazeykina, Claudio Muñoz,