کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8898996 1631507 2018 29 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Singularities at the contact point of two kissing Neumann balls
ترجمه فارسی عنوان
نقاط مختلف در نقطه تماس دو توپ بوم نینهن
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
چکیده انگلیسی
We investigate eigenfunctions of the Neumann Laplacian in a bounded domain Ω⊂Rd, where a cuspidal singularity is caused by a cavity consisting of two touching balls, or discs in the planar case. We prove that the eigenfunctions with all of their derivatives are bounded in Ω‾, if the dimension d equals 2, but in dimension d≥3 their gradients have a strong singularity O(|x−O|−α), α∈(0,2−2] at the point of tangency O. Our study is based on dimension reduction and other asymptotic procedures, as well as the Kondratiev theory applied to the limit differential equation in the punctured hyperplane Rd−1∖O. We also discuss other shapes producing thinning gaps between touching cavities.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 264, Issue 3, 5 February 2018, Pages 1521-1549
نویسندگان
, ,