کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8899159 1631511 2017 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Least gradient problems with Neumann boundary condition
ترجمه فارسی عنوان
مشکلات کمترین شیب با شرایط مرزی نویمان
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
چکیده انگلیسی
We study existence of minimizers of the least gradient probleminfv∈BVg⁡∫Ωφ(x,Dv), where BVg={v∈BV(Ω):∫∂Ωgv=1}, φ(x,p):Ω×Rn→R is a convex, continuous, and homogeneous function of degree 1 with respect to the p variable, and g satisfies the compatibility condition ∫∂ΩgdS=0. We prove that for every 0≢g∈L∞(∂Ω) there are infinitely many minimizers in BV(Ω). Moreover there exists a divergence free vector field T∈(L∞(Ω))n that determines the structure of level sets of all minimizers, i.e. T determines Du|Du|, |Du|-a.e. in Ω, for every minimizer u. We also prove some existence results for general 1-Laplacian type equations with Neumann boundary condition. A numerical algorithm is presented that simultaneously finds T and a minimizer of the above least gradient problem. Applications of the results in conductivity imaging are discussed.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 263, Issue 11, 5 December 2017, Pages 7900-7918
نویسندگان
,