کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8900540 | 1631602 | 2018 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A Tutte polynomial inequality for lattice path matroids
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let M be a matroid without loops or coloops and let T(M;x,y) be its Tutte polynomial. In 1999 Merino and Welsh conjectured thatmaxâ¡(T(M;2,0),T(M;0,2))â¥T(M;1,1) holds for graphic matroids. Ten years later, Conde and Merino proposed a multiplicative version of the conjecture which implies the original one. In this paper we prove the multiplicative conjecture for the family of lattice path matroids (generalizing earlier results on uniform and Catalan matroids). In order to do this, we introduce and study particular lattice path matroids, called snakes, used as building bricks to indeed establish a strengthening of the multiplicative conjecture as well as a complete characterization of the cases in which equality holds.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Applied Mathematics - Volume 94, March 2018, Pages 23-38
Journal: Advances in Applied Mathematics - Volume 94, March 2018, Pages 23-38
نویسندگان
Kolja Knauer, Leonardo MartÃnez-Sandoval, Jorge Luis RamÃrez AlfonsÃn,