کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8900541 1631602 2018 32 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The G-invariant and catenary data of a matroid
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
The G-invariant and catenary data of a matroid
چکیده انگلیسی
The catenary data of a matroid M of rank r on n elements is the vector (ν(M;a0,a1,…,ar)), indexed by compositions (a0,a1,…,ar), where a0≥0,  ai>0 for i≥1, and a0+a1+⋯+ar=n, with the coordinate ν(M;a0,a1,…,ar) equal to the number of maximal chains or flags (X0,X1,…,Xr) of flats or closed sets such that Xi has rank i,  |X0|=a0, and |Xi−Xi−1|=ai. We show that the catenary data of M contains the same information about M as its G-invariant, which was defined by H. Derksen (2009) [9]. The Tutte polynomial is a specialization of the G-invariant. We show that many known results for the Tutte polynomial have analogs for the G-invariant. In particular, we show that for many matroid constructions, the G-invariant of the construction can be calculated from the G-invariants of the constituents and that the G-invariant of a matroid can be calculated from its size, the isomorphism class of the lattice of cyclic flats with lattice elements labeled by the rank and size of the underlying set. We also show that the number of flats and cyclic flats of a given rank and size can be derived from the G-invariant, that the G-invariant of M is reconstructible from the deck of G-invariants of restrictions of M to its copoints, and that, apart from free extensions and coextensions, one can detect whether a matroid is a free product from its G-invariant.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Applied Mathematics - Volume 94, March 2018, Pages 39-70
نویسندگان
, ,