کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8900679 1631718 2018 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A class of generalized Tribonacci sequences applied to counting problems
ترجمه فارسی عنوان
یک کلاس توالی جملاتوگرافی تعمیم یافته برای شمارش مشکلات استفاده می شود
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
چکیده انگلیسی
Generalized Tribonacci numbers with the third order linear recurrence with constant coefficients T(k)(n)=T(k)(n−1)+T(k)(n−2)+kT(k)(n−3) for n > 2 are investigated for some sets of the initial triples (t0, t1, t2). In particular, generating functions, the Binet formula and the limit of ratio of consecutive terms T(k)(n+1)/T(k)(n) are discussed. These numbers are related to numbers of path graphs colorings with k+2 colors (or, equivalently, to counting of q-ary sequences of length n for q=k+2) satisfying requirements which follow the problem of degeneration in the Ising model with the second neighbor interactions. It is shown that the results obtained can be considered as the base for considerations of cycle graph colorings (cyclic q-ary sequences). These are counting problems, so t0, t1, t2, and k should be natural numbers, but these sequences can be considered for any real numbers. The special cases k=0,1 lead to the Fibonacci and the usual Tribonacci numbers, respectively, so the results can be applied to binary and ternary sequences.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 338, 1 December 2018, Pages 809-821
نویسندگان
,