کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8901226 1631732 2018 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Nonstandard finite differences for a truncated Bratu-Picard model
ترجمه فارسی عنوان
اختلاف محدودی غیر استاندارد برای مدل کوتاه براتو پیکارد
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
چکیده انگلیسی
In this paper, we consider theoretical and numerical properties of a nonlinear boundary-value problem which is strongly related to the well-known Gelfand-Bratu model with parameter λ. When approximating the nonlinear term in the model via a Taylor expansion, we are able to find new types of solutions and multiplicities, depending on the final index N in the expansion. The number of solutions may vary from 0, 1, 2 to ∞. In the latter case of infinitely many solutions, we find both periodic and semi-periodic solutions. Numerical experiments using a non-standard finite-difference (NSFD) approximation illustrate all these aspects. We also show the difference in accuracy for different denominator functions in NSFD when applied to this model. A full classification is given of all possible cases depending on the parameters N and λ.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 324, 1 May 2018, Pages 266-284
نویسندگان
, ,