کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8902580 | 1632142 | 2018 | 25 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The approximate solution of nonlinear Volterra integral equations of the second kind using radial basis functions
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات محاسباتی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this investigation, a computational scheme is given to solve nonlinear one- and two-dimensional Volterra integral equations of the second kind. We utilize the radial basis functions (RBFs) constructed on scattered points by combining the discrete collocation method to estimate the solution of Volterra integral equations. All integrals appeared in the scheme are approximately computed by the composite Gauss-Legendre integration formula. The implication of previous methods for solving these types of integral equations encounters difficulties by increasing the dimensional of problems and sometimes requires a mesh generation over the solution region. While the new technique presented in the current paper does not increase the difficulties for higher dimensional integral equations due to the easy adaption of RBF and also needs no cell structures on the domains. Moreover, we obtain the error bound and the convergence rate of the proposed approach. Illustrative examples clearly show the reliability and efficiency of the method and confirm the theoretical error estimates.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Numerical Mathematics - Volume 131, September 2018, Pages 140-157
Journal: Applied Numerical Mathematics - Volume 131, September 2018, Pages 140-157
نویسندگان
Pouria Assari, Mehdi Dehghan,