کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8902651 | 1632146 | 2018 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Quasi-Monte Carlo integration on manifolds with mapped low-discrepancy points and greedy minimal Riesz s-energy points
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات محاسباتی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper we consider two sets of points for Quasi-Monte Carlo integration on two-dimensional manifolds. The first is the set of mapped low-discrepancy sequence by a measure preserving map, from a rectangle UâR2 to the manifold. The second is the greedy minimal Riesz s-energy points extracted from a suitable discretization of the manifold. Thanks to the Poppy-seed Bagel Theorem we know that the classes of points with minimal Riesz s-energy, under suitable assumptions, are asymptotically uniformly distributed with respect to the normalized Hausdorff measure. They can then be considered as quadrature points on manifolds via the Quasi-Monte Carlo (QMC) method. On the other hand, we do not know if the greedy minimal Riesz s-energy points are a good choice to integrate functions with the QMC method on manifolds. Through theoretical considerations, by showing some properties of these points and by numerical experiments, we attempt to answer to these questions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Numerical Mathematics - Volume 127, May 2018, Pages 110-124
Journal: Applied Numerical Mathematics - Volume 127, May 2018, Pages 110-124
نویسندگان
Stefano De Marchi, Giacomo Elefante,