کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8902918 | 1632397 | 2018 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Subspace partitions of Fqn containing direct sums
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let q be a prime power and n be a positive integer. A subspace partition of V=Fqn, the vector space of dimension n over Fq, is a collection Î of subspaces of V such that each nonzero vector of V is contained in exactly one subspace in Î ; the multiset of dimensions of subspaces in Î is then called a Gaussian partition of V. We say that Î contains a direct sum if there exist subspaces W1,â¦,WkâÎ such that W1ââ¯âWk=V. In this paper, we study the problem of classifying the subspace partitions that contain a direct sum. In particular, given integers a1 and a2 with n>a1>a2â¥1, our main theorem shows that if Î is a subspace partition of Fqn with mi subspaces of dimension ai for i=1,2, then Î contains a direct sum when a1x1+a2x2=n has a solution (x1,x2) for some integers x1,x2â¥0 and m2 belongs to the union I of two natural intervals. The lower bound of I captures all subspace partitions with dimensions in {a1,a2} that are currently known to exist. Moreover, we show the existence of infinite classes of subspace partitions without a direct sum when m2âI or when the condition on the existence of a nonnegative integral solution (x1,x2) is not satisfied. We further conjecture that this theorem can be extended to any number of distinct dimensions, where the number of subspaces in each dimension has appropriate bounds. These results offer further evidence of the natural combinatorial relationship between Gaussian and integer partitions (when qâ1) as well as subspace and set partitions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 341, Issue 7, July 2018, Pages 1850-1863
Journal: Discrete Mathematics - Volume 341, Issue 7, July 2018, Pages 1850-1863
نویسندگان
Fusun Akman, Papa Amar Sissokho,