کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8903212 | 1632404 | 2017 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Supereulerian width of dense graphs
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
For a graph G, the supereulerian widthμâ²(G) of a graph G is the largest integer s such that G has a spanning (k;u,v)-trail-system, for any integer k with 1â¤kâ¤s, and for any u,vâV(G) with uâ v. Thus μâ²(G)â¥2 implies that G is supereulerian, and so graphs with higher supereulerian width are natural generalizations of supereulerian graphs. Settling an open problem of Bauer, Catlin (1988) proved that if a simple graph G on nâ¥17 vertices satisfy δ(G)â¥n4â1, then μâ²(G)â¥2. In this paper, we show that for any real numbers a,b with 00, there exists a finite graph family F=F(a,b,s) such that for a simple graph G with n=|V(G)|, if for any u,vâV(G) with uvââE(G), max{dG(u),dG(v)}â¥an+b, then either μâ²(G)â¥s+1 or G is contractible to a member in F. When a=14,b=â32, we show that if n is sufficiently large, K3,3 is the only obstacle for a 3-edge-connected graph G to satisfy μâ²(G)â¥3.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Mathematics - Volume 340, Issue 12, December 2017, Pages 2995-3001
Journal: Discrete Mathematics - Volume 340, Issue 12, December 2017, Pages 2995-3001
نویسندگان
Wei Xiong, Jinquan Xu, Zhengke Miao, Yang Wu, Hong-Jian Lai,