کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8903693 | 1632913 | 2018 | 25 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Internal zonotopal algebras and the monomial reflection groups G(m,1,n)
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The group G(m,1,n) consists of n-by-n monomial matrices whose entries are mth roots of unity. It is generated by n complex reflections acting on Cn. The reflecting hyperplanes give rise to a (hyperplane) arrangement GâCn. The internal zonotopal algebra of an arrangement is a finite dimensional algebra first studied by Holtz and Ron. Its dimension is the number of bases of the associated matroid with zero internal activity. In this paper we study the structure of the internal zonotopal algebra of the Gale dual of the reflection arrangement of G(m,1,n), as a representation of this group. Our main result is a formula for the top degree component as an induced representation. We also provide results on representation stability, a connection to the Whitehouse representation in type A, and an analog of decreasing trees in type B.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 159, October 2018, Pages 1-25
Journal: Journal of Combinatorial Theory, Series A - Volume 159, October 2018, Pages 1-25
نویسندگان
Andrew Berget,