| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 8903707 | 1632913 | 2018 | 14 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Extremal G-free induced subgraphs of Kneser graphs
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													ریاضیات
													ریاضیات گسسته و ترکیبات
												
											پیش نمایش صفحه اول مقاله
												 
												چکیده انگلیسی
												The Kneser graph KGn,k is a graph whose vertex set is the family of all k-subsets of [n] and two vertices are adjacent if their corresponding subsets are disjoint. The classical ErdÅs-Ko-Rado theorem determines the cardinality and structure of a maximum induced K2-free subgraph in KGn,k. As a generalization of the ErdÅs-Ko-Rado theorem, ErdÅs proposed a conjecture about the maximum cardinality of an induced Ks+1-free subgraph of KGn,k. As the best known result concerning this conjecture, Frankl (2013) [15], when nâ¥(2s+1)kâs, gave an affirmative answer to this conjecture and also determined the structure of such a subgraph. In this paper, generalizing the ErdÅs-Ko-Rado theorem and the ErdÅs matching conjecture, we consider the problem of determining the structure of a maximum family A for which KGn,k[A] has no subgraph isomorphic to a given graph G. In this regard, we determine the size and structure of such a family provided that n is sufficiently large with respect to G and k. Furthermore, for the case G=K1,t, we present a Hilton-Milner type theorem regarding above-mentioned problem, which specializes to an improvement of a result by Gerbner et al. (2012) [19].
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 159, October 2018, Pages 269-282
											Journal: Journal of Combinatorial Theory, Series A - Volume 159, October 2018, Pages 269-282
نویسندگان
												Meysam Alishahi, Ali Taherkhani,