کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8903715 1632914 2018 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An overpartition analogue of q-binomial coefficients, II: Combinatorial proofs and (q,t)-log concavity
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
An overpartition analogue of q-binomial coefficients, II: Combinatorial proofs and (q,t)-log concavity
چکیده انگلیسی
In a previous paper, we studied an overpartition analogue of Gaussian polynomials as the generating function for overpartitions fitting inside an m×n rectangle. Here, we add one more parameter counting the number of overlined parts, obtaining a two-parameter generalization [m+nn]‾q,t of Gaussian polynomials, which is also a (q,t)-analogue of Delannoy numbers. First we obtain finite versions of classical q-series identities such as the q-binomial theorem and the Lebesgue identity, as well as two-variable generalizations of classical identities involving Gaussian polynomials. Then, by constructing involutions, we obtain an identity involving a finite theta function and prove the (q,t)-log concavity of [m+nn]‾q,t. We particularly emphasize the role of combinatorial proofs and the consequences of our results on Delannoy numbers. We conclude with some conjectures about the unimodality of [m+nn]‾q,t.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 158, August 2018, Pages 228-253
نویسندگان
, ,