کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8903715 | 1632914 | 2018 | 26 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An overpartition analogue of q-binomial coefficients, II: Combinatorial proofs and (q,t)-log concavity
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In a previous paper, we studied an overpartition analogue of Gaussian polynomials as the generating function for overpartitions fitting inside an mÃn rectangle. Here, we add one more parameter counting the number of overlined parts, obtaining a two-parameter generalization [m+nn]â¾q,t of Gaussian polynomials, which is also a (q,t)-analogue of Delannoy numbers. First we obtain finite versions of classical q-series identities such as the q-binomial theorem and the Lebesgue identity, as well as two-variable generalizations of classical identities involving Gaussian polynomials. Then, by constructing involutions, we obtain an identity involving a finite theta function and prove the (q,t)-log concavity of [m+nn]â¾q,t. We particularly emphasize the role of combinatorial proofs and the consequences of our results on Delannoy numbers. We conclude with some conjectures about the unimodality of [m+nn]â¾q,t.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series A - Volume 158, August 2018, Pages 228-253
Journal: Journal of Combinatorial Theory, Series A - Volume 158, August 2018, Pages 228-253
نویسندگان
Jehanne Dousse, Byungchan Kim,