کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8903881 1632964 2018 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the decomposition of random hypergraphs
ترجمه فارسی عنوان
در تجزیه تصادفی تصادفی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
چکیده انگلیسی
For an r-uniform hypergraph H, let f(H) be the minimum number of complete r-partite r-uniform subhypergraphs of H whose edge sets partition the edge set of H. For a graph G, f(G) is the bipartition number of G which was introduced by Graham and Pollak in 1971. In 1988, Erdős conjectured that if G∈G(n,1/2), then with high probability f(G)=n−α(G), where α(G) is the independence number of G. This conjecture and its related problems have received a lot of attention recently. In this paper, we study the value of f(H) for a typical r-uniform hypergraph H. More precisely, we prove that if (log⁡n)2.001/n≤p≤1/2 and H∈H(r)(n,p), then with high probability f(H)=(1−π(K(r−1)r)+o(1))(nr−1), where π(Kr(r−1)) is the Turán density of Kr(r−1).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series B - Volume 129, March 2018, Pages 18-37
نویسندگان
,