کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8903888 | 1632964 | 2018 | 35 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A new proof of the flat wall theorem
ترجمه فارسی عنوان
یک اثبات جدید از قضیه دیوار تخت
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
نمودار، نمودار جزئی کلاغ کوچک دیوار، دیوار تخت،
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
چکیده انگلیسی
We give an elementary and self-contained proof, and a numerical improvement, of a weaker form of the excluded clique minor theorem of Robertson and Seymour, the following. Let t,râ¥1 be integers, and let R=49152t24(40t2+r). An r-wall is obtained from a 2rÃr-grid by deleting every odd vertical edge in every odd row and every even vertical edge in every even row, then deleting the two resulting vertices of degree one, and finally subdividing edges arbitrarily. The vertices of degree two that existed before the subdivision are called the pegs of the r-wall. Let G be a graph with no Kt minor, and let W be an R-wall in G. We prove that there exist a set AâV(G) of size at most 12288t24 and an r-subwall Wâ² of W such that V(Wâ²)â©A=â
and Wâ² is a flat wall in GâA in the following sense. There exists a separation (X,Y) of GâA such that Xâ©Y is a subset of the vertex set of the cycle Câ² that bounds the outer face of Wâ², V(Wâ²)âY, every peg of Wâ² belongs to X and the graph G[Y] can almost be drawn in the unit disk with the vertices Xâ©Y drawn on the boundary of the disk in the order determined by Câ². Here almost means that the assertion holds after repeatedly removing parts of the graph separated from Xâ©Y by a cutset Z of size at most three, and adding all edges with both ends in Z. Our proof gives rise to an algorithm that runs in polynomial time even when r and t are part of the input instance. The proof is self-contained in the sense that it uses only results whose proofs can be found in textbooks.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series B - Volume 129, March 2018, Pages 204-238
Journal: Journal of Combinatorial Theory, Series B - Volume 129, March 2018, Pages 204-238
نویسندگان
Ken-ichi Kawarabayashi, Robin Thomas, Paul Wollan,