کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8904059 1633039 2018 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Noncommutative Cantor-Bendixson derivatives and scattered C⁎-algebras
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات هندسه و توپولوژی
پیش نمایش صفحه اول مقاله
Noncommutative Cantor-Bendixson derivatives and scattered C⁎-algebras
چکیده انگلیسی
We analyze the sequence obtained by consecutive applications of the Cantor-Bendixson derivative for a noncommutative scattered C⁎-algebra A, using the ideal IAt(A) generated by the minimal projections of A. With its help, we present some fundamental results concerning scattered C⁎-algebras, in a manner parallel to the commutative case of scattered compact or locally compact Hausdorff spaces and superatomic Boolean algebras. It also allows us to formulate problems which have motivated the “cardinal sequences” programme in the classical topology, in the noncommutative context. This leads to some new constructions of noncommutative scattered C⁎-algebras and new open problems. In particular, we construct a type IC⁎-algebra which is the inductive limit of stable ideals Aα, along an uncountable limit ordinal λ, such that Aα+1/Aα is ⁎-isomorphic to the algebra of all compact operators on a separable Hilbert space and Aα+1 is σ-unital and stable for each α<λ, but A is not stable and where all ideals of A are of the form Aα. In particular, A is a nonseparable C⁎-algebra with no ideal which is maximal among the stable ideals. This answers a question of M. Rørdam in the nonseparable case. All the above C⁎-algebras Aαs and A satisfy the following version of the definition of an AF algebra: any finite subset can be approximated from a finite-dimensional subalgebra. Two more complex constructions based on the language developed in this paper are presented in separate papers [21], [22].
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology and its Applications - Volume 240, 15 May 2018, Pages 183-209
نویسندگان
, ,