کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8904259 1633064 2017 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Locally compact groups approximable by subgroups isomorphic to Z or R
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات هندسه و توپولوژی
پیش نمایش صفحه اول مقاله
Locally compact groups approximable by subgroups isomorphic to Z or R
چکیده انگلیسی
Let G be a locally compact topological group, G0 the connected component of its identity element, and comp(G) the union of all compact subgroups. A topological group will be called inductively monothetic if any subgroup generated (as a topological group) by finitely many elements is generated (as a topological group) by a single element. The space SUB(G) of all closed subgroups of G carries a compact Hausdorff topology called the Chabauty topology. Let F1(G), respectively, R1(G), denote the subspace of all discrete subgroups isomorphic to Z, respectively, all subgroups isomorphic to R. It is shown that a necessary and sufficient condition for G∈F1(G)‾ to hold is that G is Abelian, and either that G≅R×comp(G) and G/G0 is inductively monothetic, or else that G is discrete and isomorphic to a subgroup of Q. It is further shown that a necessary and sufficient condition for G∈R1(G)‾ to hold is that G≅R×C for a compact connected Abelian group C.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology and its Applications - Volume 215, 1 January 2017, Pages 58-77
نویسندگان
, ,