کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8904876 | 1633759 | 2018 | 36 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Livsic-type determinantal representations and hyperbolicity
ترجمه فارسی عنوان
تظاهرات مشخص کننده لویسی و هیپربولیتیک
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات (عمومی)
چکیده انگلیسی
Hyperbolic homogeneous polynomials with real coefficients, i.e., hyperbolic real projective hypersurfaces, and their determinantal representations, play a key role in the emerging field of convex algebraic geometry. In this paper we consider a natural notion of hyperbolicity for a real subvariety XâPd of an arbitrary codimension â with respect to a real ââ1-dimensional linear subspace VâPd and study its basic properties. We also consider a class of determinantal representations that we call Livsic-type and a nice subclass of these that we call very reasonable. Much like in the case of hypersurfaces (â=1), the existence of a definite Hermitian very reasonable Livsic-type determinantal representation implies hyperbolicity. We show that every curve admits a very reasonable Livsic-type determinantal representation. Our basic tools are Cauchy kernels for line bundles and the notion of the Bezoutian for two meromorphic functions on a compact Riemann surface that we introduce. We then proceed to show that every real curve in Pd hyperbolic with respect to some real dâ2-dimensional linear subspace admits a definite Hermitian, or even definite real symmetric, very reasonable Livsic-type determinantal representation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 329, 30 April 2018, Pages 487-522
Journal: Advances in Mathematics - Volume 329, 30 April 2018, Pages 487-522
نویسندگان
E. Shamovich, V. Vinnikov,