کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8918258 | 1642825 | 2017 | 26 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
System identification through online sparse Gaussian process regression with input noise
ترجمه فارسی عنوان
شناسایی سیستم از طریق رگرسیون فرایند گاوسی آنلاین با نویز ورودی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
شناسایی سیستم غیر خطی، فرآیندهای گاوسی، پسرفت، فراگیری ماشین، روش های نابجا،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
سیستم های اطلاعاتی
چکیده انگلیسی
There has been a growing interest in using non-parametric regression methods like Gaussian Process (GP) regression for system identification. GP regression does traditionally have three important downsides: (1) it is computationally intensive, (2) it cannot efficiently implement newly obtained measurements online, and (3) it cannot deal with stochastic (noisy) input points. In this paper we present an algorithm tackling all these three issues simultaneously. The resulting Sparse Online Noisy Input GP (SONIG) regression algorithm can incorporate new noisy measurements in constant runtime. A comparison has shown that it is more accurate than similar existing regression algorithms. When applied to nonlinear black-box system modeling, its performance is competitive with existing nonlinear ARX models.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC Journal of Systems and Control - Volume 2, 31 December 2017, Pages 1-11
Journal: IFAC Journal of Systems and Control - Volume 2, 31 December 2017, Pages 1-11
نویسندگان
Hildo Bijl, Thomas B. Schön, Jan-Willem van Wingerden, Michel Verhaegen,