کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8918644 | 1642856 | 2018 | 38 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Modeling of a single cell micro proton exchange membrane fuel cell by a new hybrid neural network method
ترجمه فارسی عنوان
مدل سازی یک سلول سوختی غشایی تبادل پروتئین تک سلولی با روش شبکه های عصبی ترکیبی جدید
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
مهندسی انرژی و فناوری های برق
چکیده انگلیسی
In this research, a novel hybrid model is developed based on neural network with high capability to predict the behavior of a micro proton exchange membrane fuel cell (micro-PEMFC) at various operational conditions. The proposed model is a combination of Group Method of Data Handling type neural networks and Genetic Algorithm (GMDH-GA). Genetic algorithm was used to optimize the correlation parameters to improve the accuracy of model. Input variables including humidity, temperature, electrical current and the oxygen and hydrogen flow rates were considered to predict cell performance. First, the GMDH-GA model was trained using the experimental input and output data set, then the trained model was tested using an independent data set. The model was implemented to determine the performance curves of a micro-PEMFC at different operating settings. The model could obtain the optimized values for the input variables corresponding to the value of objective function. Results showed a consistency between experimental data and the data made by the model. Therefore, it is indicated that the GMDH-GA method is an effective method, which can predict the performance of micro-cell with high accuracy.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Thermal Science and Engineering Progress - Volume 7, September 2018, Pages 8-19
Journal: Thermal Science and Engineering Progress - Volume 7, September 2018, Pages 8-19
نویسندگان
Mehdi Mehrpooya, Bahram Ghorbani, Bahram Jafari, Mortaza Aghbashlo, Mohammadhosein Pouriman,