کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8947482 | 1645580 | 2018 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Privacy-preserving MaaS fleet management
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
On-demand traffic fleet optimization requires operating Mobility as a Service (MaaS) companies such as Uber, Lyft to locally match the offer of available vehicles with their expected number of requests referred to as demand (as well as to take into account other constraints such as driver's schedules and preferences). In the present article, we show that this problem can be encoded into a Constrained Integer Quadratic Program (CIQP) with block independent constraints that can then be relaxed in the form of a convex optimization program. We leverage this particular structure to yield a scalable distributed optimization algorithm corresponding to computing a gradient ascent in a dual space. This new framework does not require the drivers to share their availabilities with the operating company (as opposed to standard practice in today's mobility as a service companies). The resulting parallel algorithm can run on a distributed smartphone based platform.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Transportation Research Part C: Emerging Technologies - Volume 94, September 2018, Pages 270-287
Journal: Transportation Research Part C: Emerging Technologies - Volume 94, September 2018, Pages 270-287
نویسندگان
Francois Belletti, Alexandre M. Bayen,