کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8953116 1645910 2018 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A second-order, uniquely solvable, energy stable BDF numerical scheme for the phase field crystal model
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات محاسباتی
پیش نمایش صفحه اول مقاله
A second-order, uniquely solvable, energy stable BDF numerical scheme for the phase field crystal model
چکیده انگلیسی
In this paper, we propose a second-order time accurate convex splitting scheme for the phase field crystal model. The temporal discretization is based on the second-order backward differentiation formula (BDF) and a convex splitting of the energy functional. The mass conservation, unconditionally unique solvability, unconditionally energy stability and convergence of the numerical scheme are proved rigorously. Mixed finite element method is employed to obtain the fully discrete scheme due to a sixth-order spatial derivative. Numerical experiments are presented to demonstrate the accuracy, mass conservation, energy stability and effectiveness of the proposed scheme.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Numerical Mathematics - Volume 134, December 2018, Pages 46-65
نویسندگان
, , ,