کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8959507 1646323 2018 28 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bi-center problem and bifurcation of limit cycles from nilpotent singular points in Z2-equivariant cubic vector fields
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
پیش نمایش صفحه اول مقاله
Bi-center problem and bifurcation of limit cycles from nilpotent singular points in Z2-equivariant cubic vector fields
چکیده انگلیسی
In this paper, bi-center problem and bifurcation of limit cycles from nilpotent singular points in Z2-equivariant cubic vector fields are studied. First, the system is simplified by using some proper transformations and the first five Lyapunov constants at a nilpotent singular point are calculated by applying the inverse integrating factor method. Then, sufficient and necessary conditions are obtained for two nilpotent singular points of the system being centers. A new perturbation scheme is present to prove the existence of 12 small-amplitude limit cycles in cubic Z2-equivariant vector fields, which bifurcate from two nilpotent singular points. This is a new lower bound of the number of limit cycles bifurcating in such systems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 265, Issue 10, 15 November 2018, Pages 4965-4992
نویسندگان
, , , ,