| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 8959514 | 1646323 | 2018 | 25 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Nonlinear damped wave equations for the sub-Laplacian on the Heisenberg group and for Rockland operators on graded Lie groups
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													ریاضیات
													آنالیز ریاضی
												
											پیش نمایش صفحه اول مقاله
												 
												چکیده انگلیسی
												In this paper we study the Cauchy problem for the semilinear damped wave equation for the sub-Laplacian on the Heisenberg group. In the case of the positive mass, we show the global in time well-posedness for small data for power like nonlinearities. We also obtain similar well-posedness results for the wave equations for Rockland operators on general graded Lie groups. In particular, this includes higher order operators on Rn and on the Heisenberg group, such as powers of the Laplacian or the sub-Laplacian. In addition, we establish a new family of Gagliardo-Nirenberg inequalities on a graded Lie groups that play a crucial role in the proof, but which are also of interest on their own: if G is a graded Lie group of homogeneous dimension Q and a>0, 1
											 
																						ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Differential Equations - Volume 265, Issue 10, 15 November 2018, Pages 5212-5236
											Journal: Journal of Differential Equations - Volume 265, Issue 10, 15 November 2018, Pages 5212-5236
نویسندگان
												Michael Ruzhansky, Niyaz Tokmagambetov,