کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8965169 | 1646702 | 2018 | 33 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Learning discriminative visual elements using part-based convolutional neural network
ترجمه فارسی عنوان
یادگیری عناصر بصری تبعیض آمیز با استفاده از شبکه عصبی کانولوشن مبتنی بر بخار
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
شبکه های عصبی انعقادی، مدل مبتنی بر بخشی، تشخیص بصری،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Mid-level element based representations have been proven to be very effective for visual recognition. This paper presents a method to discover discriminative mid-level visual elements based on deep Convolutional Neural Networks (CNNs). We present a part-level CNN architecture, namely Part-based CNN (P-CNN), which acts as a role of encoding module in a part-based representation model. The P-CNN can be attached at arbitrary layer of a pre-trained CNN and be trained using image-level labels. The training of P-CNN essentially corresponds to the optimization and selection of discriminative mid-level visual elements. For an input image, the output of P-CNN is naturally the part-based coding and can be directly used for image recognition. By applying P-CNN to multiple layers of a pre-trained CNN, more diverse visual elements can be obtained for visual recognitions. We validate the proposed P-CNN on several visual recognition tasks, including scene categorization, action classification and multi-label object recognition. Extensive experiments demonstrate the competitive performance of P-CNN in comparison with state-of-the-arts.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 316, 17 November 2018, Pages 135-143
Journal: Neurocomputing - Volume 316, 17 November 2018, Pages 135-143
نویسندگان
Lingxiao Yang, Xiaohua Xie, Jianhuang Lai,