کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8966110 | 1646771 | 2019 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Stillman's question for exterior algebras and Herzog's conjecture on Betti numbers of syzygy modules
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let K be a field of characteristic 0 and consider exterior algebras of finite dimensional K-vector spaces. In this short paper we exhibit principal quadric ideals in a family whose Castelnuovo-Mumford regularity is unbounded. This negatively answers the analogue of Stillman's Question for exterior algebras posed by I. Peeva. We show that, via the Bernstein-Gel'fand-Gel'fand correspondence, these examples also yields counterexamples to a conjecture of J. Herzog on the Betti numbers in the linear strand of syzygy modules over polynomial rings.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 223, Issue 2, February 2019, Pages 634-640
Journal: Journal of Pure and Applied Algebra - Volume 223, Issue 2, February 2019, Pages 634-640
نویسندگان
Jason McCullough,