کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
920272 | 920275 | 2010 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Detecting intra- and inter-categorical structure in semantic concepts using HICLAS
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
علم عصب شناسی
علوم اعصاب شناختی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we investigate the hypothesis that people use feature correlations to detect inter- and intra-categorical structure. More specifically, we study whether it is plausible that people strategically look for a particular type of feature co-occurrence that can be represented in terms of rectangular patterns of 1s and 0s in a binary feature by exemplar matrix. Analyzing data from the Animal and Artifact domains, we show that the HICLAS model, which looks for such rectangular structure and which therefore models a cognitive capacity of detecting feature co-occurence in large data bases of features characterizing exemplars, succeeds rather well in predicting inter- and intra-categorical structure.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Acta Psychologica - Volume 133, Issue 3, March 2010, Pages 296–304
Journal: Acta Psychologica - Volume 133, Issue 3, March 2010, Pages 296–304
نویسندگان
Eva Ceulemans, Gert Storms,