کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9435095 | 1615413 | 2005 | 37 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Nonlinear multivariate analysis of neurophysiological signals
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
علم عصب شناسی
علوم اعصاب (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Multivariate time series analysis is extensively used in neurophysiology with the aim of studying the relationship between simultaneously recorded signals. Recently, advances on information theory and nonlinear dynamical systems theory have allowed the study of various types of synchronization from time series. In this work, we first describe the multivariate linear methods most commonly used in neurophysiology and show that they can be extended to assess the existence of nonlinear interdependences between signals. We then review the concepts of entropy and mutual information followed by a detailed description of nonlinear methods based on the concepts of phase synchronization, generalized synchronization and event synchronization. In all cases, we show how to apply these methods to study different kinds of neurophysiological data. Finally, we illustrate the use of multivariate surrogate data test for the assessment of the strength (strong or weak) and the type (linear or nonlinear) of interdependence between neurophysiological signals.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Progress in Neurobiology - Volume 77, Issues 1â2, SeptemberâOctober 2005, Pages 1-37
Journal: Progress in Neurobiology - Volume 77, Issues 1â2, SeptemberâOctober 2005, Pages 1-37
نویسندگان
Ernesto Pereda, Rodrigo Quian Quiroga, Joydeep Bhattacharya,