کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9443441 | 1303529 | 2005 | 24 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Spatial residual analysis of six modeling techniques
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
علوم کشاورزی و بیولوژیک
بوم شناسی، تکامل، رفتار و سامانه شناسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In recent years alternative modeling techniques have been used to account for spatial autocorrelations among data observations. They include linear mixed model (LMM), generalized additive model (GAM), multi-layer perceptron (MLP) neural network, radial basis function (RBF) neural network, and geographically weighted regression (GWR). Previous studies show these models are robust to the violation of model assumptions and flexible to nonlinear relationships among variables. However, many of them are non-spatial in nature. In this study, we utilize a local spatial analysis method (i.e., local Moran coefficient) to investigate spatial distribution and heterogeneity in model residuals from those modeling techniques with ordinary least-squares (OLS) as the benchmark. The regression model used in this study has tree crown area as the response variable, and tree diameter and the coordinates of tree locations as the predictor variables. The results indicate that LMM, GAM, MLP and RBF may improve model fitting to the data and provide better predictions for the response variable, but they generate spatial patterns for model residuals similar to OLS. The OLS, LMM, GAM, MLP and RBF models yield more residual clusters of similar values, indicating that trees in some sub-areas are either all underestimated or all overestimated for the response variable. In contrast, GWR estimates model coefficients at each location in the study area, and produces more accurate predictions for the response variable. Furthermore, the residuals of the GWR model have more desirable spatial distributions than the ones derived from the OLS, LMM, GAM, MLP and RBF models.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ecological Modelling - Volume 186, Issue 2, 15 August 2005, Pages 154-177
Journal: Ecological Modelling - Volume 186, Issue 2, 15 August 2005, Pages 154-177
نویسندگان
Lianjun Zhang, Jeffrey H. Gove, Linda S. Heath,