کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9445218 | 1304278 | 2005 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Storage and mineralization of carbon and nitrogen in soils of a frost-boil tundra ecosystem in Siberia
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
علوم کشاورزی و بیولوژیک
بوم شناسی، تکامل، رفتار و سامانه شناسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This study examines the carbon and nitrogen stocks of soils and vegetation in different frost-boil tundra microsites (rims, troughs and bare soil patches) and aims at elucidating differences in controls of organic matter turnover. Troughs, the wettest microsite, stored the greatest part of soil C and N (23.9 and 1.7 kg mâ2, respectively), while drier rims held only 50% and bare soil patches only about 17% of the C and N found in troughs. Both C and N mineralization rates were higher in rims compared to troughs, suggesting a higher turnover of organic matter in rims. On an areal basis N was predominantly mineralized in mineral horizons, while C mineralization was more or less equally distributed between organic and mineral horizons. Thus, atmospheric warming, which has a stronger effect on the upper soil layers, may increase C mineralization to a higher extent than N mineralization (mainly located in lower soil layers). This suggests that frost-boil tundra ecosystems may be (at least in the short-term) sources of CO2 to the atmosphere. Furthermore, the combined results of gross N mineralization and net N mineralization measurements showed a higher microbial sink strength for N in rims compared to troughs, suggesting that decomposition of organic material in rims is controlled mainly by N availability, while the main factor constraining decomposition in troughs may be unfavourable hydrothermal conditions. This may lead to differential responses of frost-boil tundra microsites to changing climatic conditions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Soil Ecology - Volume 29, Issue 2, June 2005, Pages 173-183
Journal: Applied Soil Ecology - Volume 29, Issue 2, June 2005, Pages 173-183
نویسندگان
Christina Kaiser, Hildegard Meyer, Christina Biasi, Olga Rusalimova, Pavel Barsukov, Andreas Richter,