کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9492926 1333907 2005 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Uniqueness of the distribution of zeroes of primitive level sequences over Z/(pe)
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Uniqueness of the distribution of zeroes of primitive level sequences over Z/(pe)
چکیده انگلیسی
Let p be a prime number, p⩾5, Z/(pe) the integer residue ring, e⩾2, Γ={0,1,…,p−1}. For a sequence ā over Z/(pe), there is a unique decomposition ā=ā0+ā1·p+⋯+āe−1·pe−1, where āi be the sequence over Γ. Let f(x) be a primitive polynomial with degree n over Z/(pe), ā and b̄ sequences generated by f(x) over Z/(pe), ā≠0(modpe−1); we prove that the distribution of zeroes in the sequence āe−1=(ae−1(t))t⩾0 contains all information of the original sequence ā, that is, if ae−1(t)=0 if and only if be−1(t)=0 for all t⩾0, then ā=b̄. As a consequence, we have the following results: (i) two different primitive level sequences are linearly independent over Z/(p); (ii) for all positive integer k, āe−1k=b̄e−1k if and only if ā=b̄.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Finite Fields and Their Applications - Volume 11, Issue 1, January 2005, Pages 30-44
نویسندگان
, ,