| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 9493158 | 1334211 | 2005 | 16 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Irreducible polynomials and full elasticity in rings of integer-valued polynomials
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													ریاضیات
													اعداد جبر و تئوری 
												
											پیش نمایش صفحه اول مقاله
												 
												چکیده انگلیسی
												Let D be a unique factorization domain and S an infinite subset of D. If f(X) is an element in the ring of integer-valued polynomials over S with respect to D (denoted Int(S,D)), then we characterize the irreducible elements of Int(S,D) in terms of the fixed-divisor of f(X). The characterization allows us to show that every nonzero rational number n/m is the leading coefficient of infinitely many irreducible polynomials in the ring Int(Z)=Int(Z,Z). Further use of the characterization leads to an analysis of the particular factorization properties of such integer-valued polynomial rings. In the case where D=Z, we are able to show that every rational number greater than 1 serves as the elasticity of some polynomial in Int(S,Z) (i.e., Int(S,Z) is fully elastic).
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 293, Issue 2, 15 November 2005, Pages 595-610
											Journal: Journal of Algebra - Volume 293, Issue 2, 15 November 2005, Pages 595-610
نویسندگان
												Scott T. Chapman, Barbara A. McClain,