کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9493190 | 1334223 | 2005 | 30 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Braided version of Shirshov-Witt theorem
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The Shirshov-Witt theorem claims that every subalgebra of a free Lie algebra is free. In characteristic zero this theorem can be restated in terms of a free associative algebra: every Hopf subalgebra of a free algebra kãxiã with the coproduct δ(xi)=xiâ1+1âxi is free, and it is freely generated by primitive elements. Our aim is to extend this result to free algebras with a braided coproduct as far as possible. By means of P.M. Cohn theory we show that if a subalgebra is a right categorical right coideal, then it is free. We consider more thoroughly involutive braidings, Ï2=id, over a field of zero characteristic. In this case every braided Hopf subalgebra is generated by primitive elements. Moreover, the space of all primitive elements forms a free Lie Ï-algebra. In the context of this result, we discuss the situation that arises around the problem of embedding of a Lie Ï-algebra in its associative universal enveloping algebra.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 294, Issue 1, 1 December 2005, Pages 196-225
Journal: Journal of Algebra - Volume 294, Issue 1, 1 December 2005, Pages 196-225
نویسندگان
V.K. Kharchenko,