کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9493209 1334225 2005 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On higher syzygies of ruled surfaces II
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
On higher syzygies of ruled surfaces II
چکیده انگلیسی
In this article we continue the study of property Np of irrational ruled surfaces begun in [E. Park, On higher syzygies of ruled surfaces, math.AG/0401100, Trans. Amer. Math. Soc., in press]. Let X be a ruled surface over a curve of genus g⩾1 with a minimal section C0 and the numerical invariant e. When X is an elliptic ruled surface with e=−1, it is shown in [F.J. Gallego, B.P. Purnaprajna, Higher syzygies of elliptic ruled surfaces, J. Algebra 186 (1996) 626-659] that there is a smooth elliptic curve E⊂X such that E≡2C0−f. And we prove that if L∈PicX is in the numerical class of aC0+bf and satisfies property Np, then (C,L|C0) and (E,L|E) satisfy property Np and hence a+b⩾3+p and a+2b⩾3+p. This gives a proof of the relevant part of Gallego-Purnaprajna' conjecture in [F.J. Gallego, B.P. Purnaprajna, Higher syzygies of elliptic ruled surfaces, J. Algebra 186 (1996) 626-659]. When g⩾2 and e⩾0 we prove some effective results about property Np. Let L∈PicX be a line bundle in the numerical class of aC0+bf. Our main result is about the relation between higher syzygies of (X,L) and those of (C,LC) where LC is the restriction of L to C0. In particular, we show the followings: (1) If e⩾g−2 and b−ae⩾3g−2, then L satisfies property Np if and only if b−ae⩾2g+1+p. (2) When C is a hyperelliptic curve of genus g⩾2, L is normally generated if and only if b−ae⩾2g+1 and normally presented if and only if b−ae⩾2g+2. Also if e⩾g−2, then L satisfies property Np if and only if a⩾1 and b−ae⩾2g+1+p.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 294, Issue 2, 15 December 2005, Pages 590-608
نویسندگان
,