کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9493418 | 1334240 | 2005 | 23 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An induction theorem for the unit groups of Burnside rings of 2-groups
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let G be a 2-group and B(G)à denote the group of units of the Burnside ring of G. For each subquotient H/K of G, there is a generalized induction map from B(H/K)à to B(G)à defined as the composition of inflation and multiplicative induction maps. We prove that the product of generalized induction maps âB(H/K)ÃâB(G)à is surjective when the product is taken over the set of all subquotients that are isomorphic to the trivial group or a dihedral 2-group of order 2n with n⩾4. As an application, we give an algebraic proof for a theorem by Tornehave [The unit group for the Burnside ring of a 2-group, Aarhus Universitet Preprint series 1983/84 41, May 1984] which states that tom Dieck's exponential map from the real representation ring of G to B(G)à is surjective. We also give a sufficient condition for the surjectivity of the exponential map from the Burnside ring of G to B(G)Ã.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 289, Issue 1, 1 July 2005, Pages 105-127
Journal: Journal of Algebra - Volume 289, Issue 1, 1 July 2005, Pages 105-127
نویسندگان
Ergün Yalçın,