کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9493428 | 1334241 | 2005 | 25 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On the invertibility of quantization functors
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Certain quantization problems are equivalent to the construction of morphisms from “quantum” to “classical” props. Once such a morphism is constructed, Hensel's lemma shows that it is in fact an isomorphism. This gives a new, simple proof that any Etingof-Kazhdan quantization functor is an equivalence of categories between quantized universal enveloping (QUE) algebras and Lie bialgebras over a formal series ring (dequantization). We apply the same argument to construct dequantizations of formal solutions of the quantum Yang-Baxter equation and of quasitriangular QUE algebras. We derive from there a classification of all twistors killing a given associator. We also give structure results for the props involved in quantization of Lie bialgebras, which yield an associator-independent proof that the prop of QUE algebras is a flat deformation of the prop of co-Poisson universal enveloping algebras.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 289, Issue 2, 15 July 2005, Pages 321-345
Journal: Journal of Algebra - Volume 289, Issue 2, 15 July 2005, Pages 321-345
نویسندگان
Benjamin Enriquez, Pavel Etingof,