کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9493430 1334241 2005 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On structure of domains with quadratic growth
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
On structure of domains with quadratic growth
چکیده انگلیسی
Let F be a finite field, and let R be an affine F-algebra which is a domain of Gelfand-Kirillov dimension smaller than 3. Let m,n be natural numbers. Assume that x∈R is transcendental over F and y1,…,yn∈R are such that ∑i,j⩽mαi,jxiykxj=0, for some αi,j∈F (not all equal to 0) and each k⩽n. It is shown that either R satisfies a polynomial identity or else the subalgebra of R generated by y1,y2,…,yn and x has Gelfand-Kirillov dimension 1. From this we deduce that a finitely generated domain over F with quadratic growth and with an infinite centre satisfies a polynomial identity (is a PI domain). Moreover, the centralizer of a non-algebraic element in a finitely generated domain with quadratic growth over finite field is a PI domain.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 289, Issue 2, 15 July 2005, Pages 365-379
نویسندگان
,