کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9493431 | 1334241 | 2005 | 32 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A Galois theory of commutative rings
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Galois objects-Galois groups, rings, Lie rings, and birings G-act on commutative rings A and satisfy Galois correspondence theorems which support Galois descent. This generalizes the Galois theory of fields to a Galois theory of commutative rings. In particular, the classical correspondence of Galois, the Jacobson-Bourbaki correspondence [N. Jacobson, Lectures in Algebra, vol. 3, Van Nostrand, 1964; D.J. Winter, The Jacobson descent theorem, Pacific J. Math. 104 (2) (1983) 495-496; D.J. Winter, The Structure of Fields, Springer-Verlag, 1974], the Jacobson differential correspondence [N. Jacobson, op. cit.; D.J. Winter, The Structure of Fields, op. cit.], the Galois birings correspondence of [D.J. Winter, The Structure of Fields, op. cit.], and corresponding theories of Galois descent [N. Jacobson, Forms of algebras, Yeshiva Sci. Confs. 7 (1966) 41-71; D.J. Winter, The Jacobson descent theorem, op. cit.; D.J. Winter, The Structure of Fields, op. cit.] generalize from fields to commutative rings. The Galois Lie rings correspondence Theorem 4.2 solves the simple restricted irreducible derivation rings Problem 8.4 in the finitely generated case.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 289, Issue 2, 15 July 2005, Pages 380-411
Journal: Journal of Algebra - Volume 289, Issue 2, 15 July 2005, Pages 380-411
نویسندگان
David J. Winter,