کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9497251 1336257 2005 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the direct image of intersections in exact homological categories
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
On the direct image of intersections in exact homological categories
چکیده انگلیسی
Given a regular epimorphism f:X↠Y in an exact homological category C, and a pair (U,V) of kernel subobjects of X, we show that the quotient (f(U)∩f(V))/f(U∩V) is always abelian. When C is nonpointed, i.e. only exact protomodular, the translation of the previous result is that, given any pair (R,S) of equivalence relations on X, the difference mappingδ:Y/f(R∩S)↠Y/(f(R)∩f(S)) has an abelian kernel relation. This last result actually holds true in any exact Mal'cev category. Setting Y=X/T, this result says that the difference mapping determined by the inclusion T∪(R∩S)⩽(T∪R)∩(T∪S) has an abelian kernel relation, which casts a new light on the congruence distributive property.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 196, Issue 1, March 2005, Pages 39-52
نویسندگان
,