کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9497525 | 1630757 | 2005 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Inversion problem, Legendre transform and inviscid Burgers' equations
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let F(z)=z-H(z) with order o(H(z))⩾1 be a formal map from Cn to Cn and G(z) the formal inverse map of F(z). We first study the deformation Ft(z)=z-tH(z) of F(z) and its formal inverse Gt(z)=z+tNt(z). (Note that Gt=1(z)=G(z) when o(H(z))⩾2.) We show that Nt(z) is the unique power series solution of a Cauchy problem of a PDE, from which we derive a recurrent formula for Gt(z). Secondly, motivated by the gradient reduction obtained by de Bondt and van den Essen (A Reduction of the Jacobian Conjecture to the Symmetric Case, Report No. 0308, University of Nijmegen, June 2003, Proc. of the AMS, to appear) and Meng (Legendre Transform, Hessian Conjecture and Tree Formula, math-ph/0308035) for the Jacobian conjecture, we consider the formal maps F(z)=z-H(z) satisfying the gradient condition, i.e. H(z)=âP(z) for some P(z)âC[[z]] of order o(P(z))⩾2. We show that, under the gradient condition, Nt(z)=âQt(z) for some Qt(z)âC[[z,t]] and the PDE satisfied by Nt(z) becomes the n-dimensional inviscid Burgers' equation, from which a recurrent formula for Qt(z) also follows. Furthermore, we clarify some close relationships among the inversion problem, the Legendre transform and the inviscid Burgers' equations. In particular the Jacobian conjecture is reduced to a problem on the inviscid Burgers' equations. Finally, under the gradient condition, we derive a binary rooted tree expansion inversion formula for Qt(z). The recurrent inversion formula and the binary rooted tree expansion inversion formula derived in this paper can also be used as computational algorithms for solutions of certain Cauchy problems of the inviscid Burgers' equations and the Legendre transforms of the power series f(z) with o(f(z))⩾2 and detHes(f)(0)â 0.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 199, Issues 1â3, 1 July 2005, Pages 299-317
Journal: Journal of Pure and Applied Algebra - Volume 199, Issues 1â3, 1 July 2005, Pages 299-317
نویسندگان
Wenhua Zhao,