کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9497688 1630767 2017 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Some reductions on Jacobian problem in two variables
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Some reductions on Jacobian problem in two variables
چکیده انگلیسی
Let f=(f1,f2) be a regular sequence of affine curves in C2. Under some reduction conditions achieved by composing with some polynomial automorphisms of C2, we show that the intersection number of curves (fi) in C2 equals to the coefficient of the leading term xn−1 in g2, where n=degfi(i=1,2) and (g1,g2) is the unique solution of the equation yJ(f)=g1f1+g2f2 with deggi⩽n−1. So the well-known Jacobian problem is reduced to solving the equation above. Furthermore, by using the result above, we show that the Jacobian problem can also be reduced to a special family of polynomial maps.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Brought to you by:Anil Neerukonda Institute of Technology and Sciences 'Renewal due by 31 Dec 2017'
نویسندگان
,