کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9497688 | 1630767 | 2017 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Some reductions on Jacobian problem in two variables
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let f=(f1,f2) be a regular sequence of affine curves in C2. Under some reduction conditions achieved by composing with some polynomial automorphisms of C2, we show that the intersection number of curves (fi) in C2 equals to the coefficient of the leading term xnâ1 in g2, where n=degfi(i=1,2) and (g1,g2) is the unique solution of the equation yJ(f)=g1f1+g2f2 with deggi⩽nâ1. So the well-known Jacobian problem is reduced to solving the equation above. Furthermore, by using the result above, we show that the Jacobian problem can also be reduced to a special family of polynomial maps.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Brought to you by:Anil Neerukonda Institute of Technology and Sciences 'Renewal due by 31 Dec 2017'
Journal: Journal of Pure and Applied Algebra - Brought to you by:Anil Neerukonda Institute of Technology and Sciences 'Renewal due by 31 Dec 2017'
نویسندگان
Wenhua Zhao,