کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9498175 1631192 2005 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the difference between the maximum multiplicity and path cover number for tree-like graphs
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
On the difference between the maximum multiplicity and path cover number for tree-like graphs
چکیده انگلیسی
For a given undirected graph G, the maximum multiplicity of G is defined to be the largest multiplicity of an eigenvalue over all real symmetric matrices A whose (i, j)th entry is non-zero whenever i ≠ j and {i, j} is an edge in G. The path cover number of G is the minimum number of vertex-disjoint paths occurring as induced subgraphs of G that cover all the vertices of G. We derive a formula for the path cover number of a vertex-sum of graphs, and use it to prove that the vertex-sum of so-called non-deficient graphs is non-deficient. For unicyclic graphs we provide a complete description of the path cover number and the maximum multiplicity (and hence the minimum rank), and we investigate the difference between path cover number and maximum multiplicity for a class of graphs referred to as block-cycle graphs.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 409, 1 November 2005, Pages 13-31
نویسندگان
, , ,