کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9498175 | 1631192 | 2005 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On the difference between the maximum multiplicity and path cover number for tree-like graphs
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
For a given undirected graph G, the maximum multiplicity of G is defined to be the largest multiplicity of an eigenvalue over all real symmetric matrices A whose (i, j)th entry is non-zero whenever i â  j and {i, j} is an edge in G. The path cover number of G is the minimum number of vertex-disjoint paths occurring as induced subgraphs of G that cover all the vertices of G. We derive a formula for the path cover number of a vertex-sum of graphs, and use it to prove that the vertex-sum of so-called non-deficient graphs is non-deficient. For unicyclic graphs we provide a complete description of the path cover number and the maximum multiplicity (and hence the minimum rank), and we investigate the difference between path cover number and maximum multiplicity for a class of graphs referred to as block-cycle graphs.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 409, 1 November 2005, Pages 13-31
Journal: Linear Algebra and its Applications - Volume 409, 1 November 2005, Pages 13-31
نویسندگان
Francesco Barioli, Shaun Fallat, Leslie Hogben,