کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
9498257 1631194 2005 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
r-Indecomposable and r-nearly decomposable matrices
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
r-Indecomposable and r-nearly decomposable matrices
چکیده انگلیسی
Let n, r be integers with 0 ⩽ r ⩽ n − 1. An n × n matrix A is called r-partly decomposable if it contains a k × l zero submatrix with k + l = n − r + 1. A matrix which is not r-partly decomposable is called r-indecomposable (shortly, r-inde). Let Eij be the n × n matrix with a 1 in the (i, j) position and 0's elsewhere. If A is r-indecomposable and, for each aij ≠ 0, the matrix A − aijEij is no longer r-indecomposable, then A is called r-nearly decomposable (shortly, r-nde). In this paper, we derive numerical and enumerative results concerning r-nde matrices of 0's and 1's. We also obtain some bounds on the index of convergence of r-inde matrices, especially for the adjacency matrices of primitive Cayley digraphs and circulant matrices. Finally, we propose an open problem for further research.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 407, 15 September 2005, Pages 105-116
نویسندگان
, , ,